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Abstract 
Many space-science experiments need an active iso- 
lation system to provide a sufficiently quiescent mi- 
crogravity environment. Modern control methods 
provide the potential for both high-performance 
and robust stability in the presence of paramet- 
ric uncertainties that are characteristic of micro- 
gravity vibration isolation systems. While H2 and 
Ho0 methods are well established, neither provides 
the levels of attenuation performance and robust 
stability in a compensator with low order. Mixed 
H 2 / H ,  controllers provide a means for maximiz- 
ing robust stability for a given level of mean-square 
nominal performance while directly optimizing for 
controller order constraints. This paper demon- 
strates the benefit of mixed norm design from the 
perspective of robustness to parametric uncertain- 
ties and controller order for microgravity vibration 
isolation. A nominal performance metric analogous 
to the p meamre, for robust stability assessment 
is also introduced in order to define an acceptable 
trade space from which different control methodolo- 
gies can be compared. 

1 Introduction 

Conducting research in a low-acceleration environ- 
ment enables scientific investigations that are not 
possible on the surface of the earth. Entirely new 
research directions are being developed for pursuit 
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in low earth orbit in disciplines such as life sciences, 
materials science, combustion, fundamental physics 
and fluid mechanics. When completed, the Inter- 
national Space Station (ISS) will be a unique re- 
search laboratory for state-of-the-art microgravity 
( p g )  science investigations. 

Yet due to a variety of vibro-acoustic distur- 
bances on the ISS, the acceleration environment is 
expected to significantly exceed the requirements 
of many acceleration sensitive experiments. Fig- 
ure 1 presents an estimate of the acceleration envi- 
ronment on the ISS at assembly complete, which 
exceeds the required acceleration levels for pg 
science (from the ISS Microgravity Environment 
Specification’) at virtually all frequencies. Mitiga- 
tion of the excessive acceleration environment re- 
quires the implementation of vibration isolation sys- 
tems at either the disturbance source or the science 
payload. While an effort is being made to limit the 
induced disturbances, the ubiquitous nature of dis- 
turbance sources necessitates the use of vibration 
isolation at the payloadlrack locations. 

By comparing the ISS acceleration requirement 
with the expected ISS acceleration environment, an 
isolation performance specification can be derived. 
T h e  inertial isolation is neither desirable nor pos- 
sible due to the large amplitude motion of the ISS 
from low frequency gravity gradient and aerody- 
namic torques. At these low frequencies, the iso- 
lated experiment must move with the ISS and the 
isolation system must directly transmit the very low 
frequency quasi-steady accelerations of the vehicle 
to the isolated assembly. Figure 1 implies that the 
isolation system must attenuate the ambient ISS 
accelerations by one order of magnitude at 0.1 Hz, 
which for a second order system implies a maximum 
break frequency of 0.01 Hz. This break frequency 
is constrained from below as well by the “rattle 



Figure 1: Predicted RMS Acceleration Environ- 
ment of the International Space Station in pg 

space," an of relative motion between the isolated 
experiment and the moving ISS support structure. 
Hence the isolation system must pass through accel- 
erations below 0.01 Hz and attenuate disturbances 
above 0.01 Hz. An isolation system that satisfies 
this attenuation function would reduce the ambi- 
ent environment sufficiently to provide the required 
environment at the payload location. 

Much like traditional flexible space structures, 
microgravity vibration isolation systems require 
high performance control of uncertain systems. Mi- 
crogravity vibration isolation is a challenging struc- 
tural control problem due to the precision of oper- 
ation and the stringent performance requirements. 
The isolation system must sense and cancel acceler- 
ations with a magnitude of one-millionth the accel- 
eration of gravity at the surface of the earth (1 pg) 
occurring over tens of seconds. This low frequency 
attenuation is typically accomplished with high gain 
acceleration feedback. Some payloads also require 
command tracking or cancellation of direct distur- 
bance forces at frequencies of tens of Hz, thus neces- 
sitating high bandwidth control. Model uncertain- 
ties such as flexible utility umbilicals and payload 
structural dynamics add to the challenge by intro- 
ducing the potential for interaction between control 
and payload isolation systems. 

To date, most flight systems have used classical 
control  method^.^,^ Limited applications of Hz and 
Ho0 control methods to microgravity vibration iso- 
lation have been addressed in design studies. HZ 
methods have been fruitfully applied for nominal 

performance4-' while H, methods have been used 
for robust stability to parametric uncertainties6 and 
high frequency unmodeled modes.7 However, previ- 
ous multivariable designs did not meet performance 
requirements with acceptable stability properties, 
nor did they address implementation issues such 
as compensator dimension. This paper addresses 
mixed norm controllers that maximize robust sta- 
bility while satisfying an H2 nominal performance 
requirement. 

2 g-LIMIT System Descrip- 
tion 

g-LIMIT (GLovebox Integrated Microgravity Isola- 
tion Technology) is a microgravity vibration isola- 
tion system designed and built by the NASA Mar- 
shall Space Flight Center to provide active vibra- 
tion isolation for pg science payloads on the In- 
ternational Space Station.8 Shown in Figure 2, g- 
LIMIT is scheduled for launch on the ULF-1 mission 
and will commence characterization testing shortly 
thereafter. 

Figure 2: g-LIMIT System Assembly 

2.1 Hardware Description 
There are two main subsystems of g-LIMIT: the in- 
ertially isolated assembly to which an experiment 
is mounted and the base assembly which is rigidly 
attached to the ISS rack support structure. Con- 
trol forces are applied to the isolated assembly us- 
ing non-contact Lorentz force actuators. Inertial 
force-balanced proof mass accelerometers measure 
the inertial motion of the isolated platform and a 
unique patent-pending relative position sensing sys- 
tem measures the relative motion of the isolated 
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assembly with respect to the ISS-mounted base as- 
sembly. Three lock-down fasteners secure the iso- 
lator assembly to  the base plate during transport, 
stowage, installation and idle times. Integrated into 
the base assembly and the isolated assembly is a 
snubber system, which provides mechanical rattle- 
space constraints with a maximum relative displace- 
ment of ten mm between the isolator assembly and 
the base assembly. As shown in Figure 2, the only 
mechanical connection between the isolated plat- 
form and the base assembly is the set of umbilicals 
that pass resources between the ISS and the experi- 
ment. Since the umbilicals are the load path for ISS 
vibration disturbances to  the platform, the mechan- 
ical properties of these flexible umbilicals are the 
primary uncertainties in the dynamic model used 
for control design. g-LIMIT is approximately 13 
inches high, 15 inches long at the base and 14 inches 
wide at the base. 

2.2 Control System Architecture 
In order to provide a quiescent acceleration envi- 
ronment to an experiment, an active isolation sys- 
tem must sense and cancel the acceleration of the 
experiment. g-LIMIT accomplishes inertial isola- 
tion using an acceleration feedback control system 
to sense the motion of the acceleration sensitive ex- 
periment and apply forces to reject the unwanted 
motion. An outer-loop (low frequency) position 
feedback controller is used to center the platform 
in the sway space while commanding the platform 
to follow the quasi-steady motion of the vehicle. By 
sensing relative position and absolute acceleration 
of the platform, the active control system forces the 
platform to follow the very-low-frequency motion 
of the base while attenuating the base motion at 
higher frequencies. 

The inner loop/outer loop architecture for the g- 
LIMIT control system is chosen so that the position 
loop will issue acceleration commands to be tracked 
by the high gain acceleration loop. Because the ac- 
celerations are not always commanded to zero, the 
position loop actually disturbs the acceleration en- 
vironment by forcing the platform to remain cen- 
tered. However, the inner and outer loops are sep- 
arated in the frequency domain such that the po- 
sition control system only operates at very low fre- 
quencies. This architecture is used to reject accel- 
eration sensor bias and umbilical force bias, both 
of which are not directly measurable but manifest 

a position error. Through integral action, the po- 
sition control system rejects these biases and per- 
mits the acceleration control system to reject dis- 
turbances above 0.01 Hz. Because of the potential 
interaction between the position and acceleration 
control loops, the position loop must be considered 
in the analysis and design of the acceleration control 
loop. The baseline control approach for g-LIMIT 
uses PID controllers for both 1 0 0 ~ s . ~  

Another controller architecture permitted by 
g-LIMIT software is a fully centralized multiple- 
input/multiple-output (MIMO) controller that has 
as its input both acceleration and position measure- 
ments. The position sensor measurements are sam- 
pled at 25 Hz whereas the accelerations are sam- 
pled at 500 Hz, but this two-sample rate scenario 
can be adequately accommodated in a MIMO con- 
text by including the anti-aliasing filters on the rel- 
ative position measurements. This is one means of 
frequency weighting that may be used to  prevent 
interaction between the position and acceleration 
control in a fully centralized design. 

However, the large dynamic range and large 
number of frequency weighting states required of 
a fully centralized design unnecessarily complicates 
the control design and could potentially lead to  nu- 
merical issues. While modern control tools are well 
suited to frequency dependent designs of this na- 
ture, fully centralized control is unnecessary and 
undesirable in this context. In view of the simplic- 
ity and adequacy of a PID type position controller 
in the outer loop, this paper explores an architec- 
ture where a MIMO acceleration controller is de- 
signed for the inner loop while the baseline nominal 
PID position controller is implemented in the outer 
loop. 

3 Control Design Approaches 

Classical control methods are known to provide in- 
herent robustness and simplicity of design and im- 
plementation. However, classical control methods 
are not well suited for multivariable (coupled) sys- 
tems with parametric uncertainties. Such is the 
case with microgravity vibration isolation systems. 
Isolation systems cannot be tested in six degrees 
of freedom on the ground due to gravitational cou- 
pling, hence the dynamic properties of the system 
are often poorly known prior to  on-orbit operation. 
In some cases, only a lower limit is known for the 
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structural frequencies of an experiment payload to 
be mounted to the isolation system. The combi- 
nation of unknown payload characteristics and un- 
certain flexible umbilicals in the primary load path 
results in an uncertain multivariable dynamic sys- 
tem with stringent performance requirements. 

3.1 Design for Nominal Performance 
H2 methods are often used when designing control 
systems to reduce the vibration response of a flexi- 
ble structure. While Hz design gives good nominal 
performance, the controllers are highly tuned to the 
design model and errors in the design model are not 
accounted for, typically inducing instability in the 
presence of slight parameter variations with high 
authority controllers. Controller order reduction is 
also not routinely possible because of the sensitivity 
of the control gains. As a result, the actual perfor- 
mance achievable is limited with H2 designs. To 
achieve high levels of performance in the presence 
of uncertainties associated with umbilical and pay- 
load (isolated experiment) dynamics, robustness to 
model errors must be taken into account, in the de- 
sign process. 

Another approach to design for nominal perfor- 
mance employs the H ,  norm, which can be inter- 
preted as the gain of the system and is the worst- 
case amplification over all inputs V(t)  of unit en- 
ergy. From a frequency domain perspective, the 
H ,  norm is defined as the maximum singular value 
of T(s) over all frequencies, i.e. 

II T*w 11,= SUP{W*W(j l J ) ) )  (1) 
W 

where z(t)  represents the vector of performance 
variables. H ,  control design theory, based on 
Refs. 9 and 10, involves defining (possibly fre- 
quency dependent) weights on the inputs and out- 
puts such that the performance objectives are sat- 
isfied by minimizing 1 1  T,,, 11,. Because the H ,  
norm is defined with respect to the peak magni- 
tude of the transfer matrix frequency response and 
the H2 norm is defined by an integral square quan- 
tity (in time or frequency by Parseval’s Theorem), 
the respective closed loop systems typically have 
considerably different characteristics. With regard 
to mean-square performance requirements of micro- 
gravity vibration isolation, H2 design is typically 
better suited for nominal performance than are H ,  
designs. The significant benefit of H ,  theory how- 

ever is that robustness to model errors is explicitly 
factored into the design process. 

3.2 Design for Robust Stability 
In addition to nominal performance, robust stabil- 
ity is an important design consideration. Robust 
stability requires the closed loop system to remain 
stable in the presence of bounded model errors. 
The uncertainty may be modeled in many forms 
such as multiplicative, inverse multiplicative, addi- 
tive, parametric, etc and may be located at various 
points in the loop. Because previous research has 
shown that the g-LIMIT control system stability is 
most sensitive to variations in the umbilical stiff- 
ness, a parametric uncertainty model is used herein 
to account for variations in the stiffness and damp- 
ing of one umbilical. Additional details on the un- 
certainty model may be found in Ref. 11. 

By absorbing all of the scalings and weights into 
the plant P, the robust stability problem may be 
formulated as the Linear Fractional Transformation 
(LFT) shown in Fig. 3-a. The uncertainties are 
scaled so that A6 is the set of all stable perturba- 
tions such that 1 1  A [ I r n <  6. Assuming that K(s) in- 
ternally stabilizes the closed loop for A = 0, then a 
sufficient condition for robust stability for all plants 
in the set formed by A E As is that12J3 

Thus like the nominal performance problem, robust 
stability is provided by minimizing the norm of a 
particular transfer function. 

3.3 Design for Nominal Performance 
and Robust Stability 

Whereas H ,  (and p-synthesis ) methods provide 
both robust stability and robust performance in the 
presence of model errors, the performance is defined 
by an o3-norm measure. A better approach from 
a mean square performance perspective is mixed 
H2/H,  optimization. The mixed H2/H,  design 
procedure has been developed to provide robust 
stability and nominal ( H Z  ) performance by min- 
imizing the Hz norm for one set of inputs/outputs 
while satisfying an m-norm over-bound for another 
set of inputs/outputs. This mixed norm approach 
separates the optimization problem into two sub- 
problems where the most appropriate norm is ap- 
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Figure 3: Linear Fkactional Transformations 

plied. For the inputs and outputs associated with 
performance, the H2 norm is optimized while an 
upper limit on the m-norm is guaranteed for the 
inputs and outputs associated with the uncertainty 
model. With respect to Fig. 3-b, the objective is to 
satisfy 

m p  II Tz2u12 112 (3) 

subject to 
I I  Ttlwl Ilm< 7 (4) 

The foundational work in mixed H z / H ,  design 
was done by Bernstein and Haddad16 who consid- 
ered the case of one input and two outputs, with 
both full and fixed-order control. The first attempt 
at solving the general mixed H2/Hm problem was 
by Rotea and Khargonekar" who allowed indepen- 
dent inputs and outputs for the two transfer func- 
tions and minimized the actual H2 norm based on 
full state feedback. Ridgely extended the formu- 
lation to output feedback including the fixed or- 
der case with either regular or singular Ho0 con- 
straints and provided a numerical solution in Refs. 
18 and 19. Another approach to the general mixed 
H 2 / H ,  problem was developed by Sweriduk and 

Calise in Ref. 14, who used a differential games for- 
mulation to  obtain fixed-order controllers. Ref. 15 
presented a homotopy algorithm for the numerical 
solution of the necessary conditions of this formu- 
lation. The next section provides the mathematical 
framework for mixed H2/H,  control design based 
on the method in Refs. 14 -15. This approach is 
then applied to design mixed H2 / H ,  controllers for 
the g-LIMIT microgravity vibration isolation sys- 
tem. 

4 Mixed H2/Hm Problem For- 
mulation 

The generalized plant of a standard control problem 
is given by 

X = A ~ + B p w p + B l w + B 2 ~  (5) 

zp = C p x + D l p u  (6) 
z = Cix+D12u (7) 
1~ = CZX + D z p ~ p  + DZIW + D 2 2 ~  ( 8 )  

where x E Rn is the state vector, w p  E RnWP and 
z p  E Rnzp are the inputs and outputs defining the 
H2 subproblem, w E Rnw and z E Rnz are the 
inputs and outputs defining the H ,  subproblem, 
u E Rnu is the control vector, and y E RnY is the 
measurement vector. Stabilizability, detectability, 
and standard rank conditions on the generalized 
plant are assumed. 

To avoid the problem of overparametrization, a 
canonical form description for the controller can be 
used. It was shown in Ref. 20 that if either a con- 
troller or observer canonical form is imposed on the 
compensator structure, the number of parameters is 
reduced to its minimal number. The internal struc- 
ture of the compensator is prespecified by assigning 
a set of feedback invariant indices vi. In controller 
canonical form the compensator is defined as 

& = POs,+NOu,-NOy (9) 
u, = -Px, (10) 
u = - H x ,  (11) 

where x ,  E Rnc and u, E RnU. P and H are free- 
parameter matrices, and Po and N o  are fixed ma- 
trices of zeros and ones determined by the choice of 
controllability indices vi as follows: 

Po = block diag{P:, . . . , P&} (12) 
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(13) 

1 0  ....... 0 
v, x v, 

N o  = block diag { [ O . .  . O1]Txv,} (14) 

The controllability indices where i = 1,. . . , n g .  
must satisfy the following condition: 

which imposes the lower bound nc 2 ng on the 
order of the compensator. 

When the canonical realization of the compen- 
sator dynamics is employed, augmenting the com- 
pensator states with the plant states allows the sys- 
tem to be formulated as a static gain optimization 
problem. Let 

= [ e ]  
= [:J 

The augmented system may be expressed as: 

For the H2 sub-problem, the objective is to  min- 
imize the H2-norm of the closed loop transfer func- 
tion from disturbance inputs, wp to performance 
outputs, zp  

Trpzvp = eP(d - A)-'Bp (26) 

where the disturbances are confined to  the set of 
signals with bounded power and fixed spectra. For 
the H ,  sub-problem, the objective is to  minimize 
the H ,  norm of the transfer function from distur- 
bance inputs w to  performance outputs z .  The per- 
formance index for the mixed H 2 / H ,  problem is a 
weighted combination of the Lagrangian for the H2 
problem and the Lagrangian for the H ,  problem 
and is given by :14 

c = t r  { &,iiT + ( A ~ Q ,  + &,A 
+ZITZI + ~ Q , B B ~ Q , ) L  
+xxc,.ep + ( A X  + X A T  

+ BpB,.,Lp) (27) 

The weight X on the H2-norm allows a tradeoff' be- 
tween (H2)  performance and the H ,  norm. Matrix 
gradients are taken to obtain the first order neces- 
sary conditions: 

A 

A3 + Bpwp + B1w + Bzii  + BBT = 0 (28) 
[ c p  O ] j i + [ D 1 ,  o ] i i  ac 
cp3 + D1,ii (19) 
[ C l  0 ] 3 + [ 0 1 2  01' 

- aL = ATQ,+Q,A+ZITC+ 

T - ~ Q , B B ~ Q ,  = o (29) 

- [  .,],=-G, 

- 18-22 define a static gain output feedback 
problem where the compensator is represented by 

+XDTPDipGC2 X CT a minimal number of free parameters in the design 
matrix, G. 

Consequently, the closed loop system is given by -BTLpXC,T] = 0 (32) 

5 = ( A  - B2GC2)Z + B p ~ p  + B ~ w  A homotopy algorithm is presented in Ref. 15 
= A 3 + B p w p + B w  (23) which solves these necessary conditions and com- 

putes a family of mixed H 2 / H ,  compensators for 
(24) varying weights 7 and A. The homotopy algorithm 

z = (C1 -D12GC2)% =(?it (25) for fixed-order mixed H2 / H ,  design also generates 
Zp = (Cp - DlPGC2)3 = EP3 
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H2 , H2/Hm , and p controllers of fixed dimension 
as special cases. This homotopy algorithm is a two- 
parameter iterative scheme that effectively trades 
between robust stability and nominal performance 
by varying the over bound on the oo-norm and the 
weight on the H2 cost in the mixed norm cost func- 
tional. For a fixed y overbound, the weight on the 
H2 cost, A, is increased until either the oo-norm 
constraint becomes an active, equality constraint 
or until the H2 norm ceases to decrease. Solutions 
where the oo-norm constraint is active (at which 
point the H2 norm can no longer be reduced) are 
called boundary solutions, the set of which provides 
an explicit, Pareto optimal trade between nominal 
performance and robust stability. By incorporat- 
ing the D-scales from p-synthesis into the H ,  sub- 
problem, the structure of the uncertainty block may 
be accounted for, resulting in the fixed order mixed 
H 2 / p  design procedure used in the following sec- 
tion. 

5 Control Design Results 

Several aspects of the g-LIMIT microgravity vi- 
bration control application make the fixed order 
mixed H2/Hm design procedure particularly apro- 
pos. The primary control objective for g-LIMIT is 
to  satisfy the officially documented flight project 
performance requirement,s which is shown below 
against the design results in Fig. 5. Robust- 
ness is an obvious design issue as well, one that 
must be addressed while meeting the performance 
requirement. The mixed H2/Hm design method 
provides just that: it maximizes stability robust- 
ness to bounded model errors for a given level of 
mean-square performance. Likewise, nominal per- 
formance can be maximized while guaranteeing a 
specified level of robust stability. 

Controller state dimension is also a significant 
implementation issue for g-LIMIT. Standard H2 
and H ,  design approaches yield full-order com- 
pensators with the dimension of the generalized 
plant, including weighting function states and D- 
scale states for p-synthesis . Generalized plant di- 
mension is especially significant in this case because 
of the controller architecture. Including the closed 
position loop in the generalized plant as shown in 
Figure 3, increases the dimension of the generalized 
plant and hence the dimension of the full order H2 
and H ,  controllers. 

This is a good example of superfluous controller 
states arising from the methodology rather than the 
design process. With six PID position controllers 
in the outer loop, the full order MIMO accelera- 
tion controller will have 12 states due strictly to 
the architecture. The nominal plant dynamics has 
a minimum of 18 states (six position, six velocity, 
and six for acceleration output filters). Since the 
flight computer throughput limits the controller to 
35 states, the remaining five states available for de- 
sign weights is clearly insufficient if full order design 
is to be used. Stability and performance proper- 
ties are not generally retained if the controller or- 
der must be reduced to  a degree that can be imple- 
mented. That is especially true in this case because 
of the stringent performance requirements of micro- 
gravity vibration isolation. The fixed-order mixed 
norm method addresses this limitation of standard 
robust control by synthesizing MIMO acceleration 
controllers with a specified dimension that is an in- 
teger multiple of the number of measurements, e.g. 
6, 12, 18, etc states. 

By enforcing the order constraints in the fixed 
order mixed H2/Hm design procedure, robust sta- 
bility can be maximized for a given level of mean- 
square performance with controllers that can be im- 
plemented in flight hardware. More than simply 
demonstrating the utility of this methodology, the 
microgravity vibration isolation application justifies 
the significance of this approach. 

5.1 H2 Designs 
The generalized plant for control design is shown 
in Fig. 4. For H2 design, the disturbance inputs 
include the three translational base accelerations, 
wacc; three directly applied forces, wfd; and six ele- 
ments of the accelerometer noise vector, nacc. The 
performance outputs include weighted platform ac- 
celeration, zacc; weighted position control signal, 
zpu; and weighted acceleration control, zu. As a 
consequence of the control architecture described 
in the last section, the input to the control system 
is the acceleration error, which is the difference in 
platform acceleration measurement and the acceler- 
ation command generated by the baseline PID po- 
sition controller. Six actuator forces comprise the 
control input vector. The g-LIMIT flight hardware 
includes analog anti-aliasing filters which are repre- 
sented in this design as a second order filter with 
a 125 Hz break frequency on the acceleration mea- 
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surement and a single 10 Hz low pass filter on po- 
sition measurements. 

To assess nominal performance, a metric de- 
noted “attenuation factor” is defined for each con- 
troller as the maximum value of the ratio of 
achieved performance to the required performance 
over the frequency range of interest: 

(33) 
where the “p” subscript indicates platform accelera- 
tion and the “b” subscript indicates the base (ISS) 
disturbance acceleration. Performance here is de- 
fined as the maximum singular value of the closed 
loop transfer function from ISS translational accel- 
erations to the isolated platform translational ac- 
celeration. The frequency range of interest is not 
exactly arbitrary, but is chosen as the range from 
.01 Hz to  3 Hz (slight exceedances are allowed below 
0.01 Hz and around 10 Hz, the latter due to limiting 
the controller state dimension). This range provides 
a consistent comparison across controllers designed 
with different methods. (Note that the results are 
slightly exaggerated for low authority controllers 
due to the resonant amplification at the break fre- 
quency.) Using this performance metric provides 
a scalar measure of nominal performance akin to 
the scalar p measure for robust stability analysis. 
Controllers with attenuation factors greater than 
one fail to  meet the performance requirement while 
controllers with attenuation factors less than one 
exceed the requirement. 

A set of Hz control designs is designed for vary- 
ing levels of performance and control authority by 
varying W, in the acceleration performance weight 

I i  \ 

(34) - 
(U.UU.J.&3 f 1) 

which penalizes accelerations up to 50 Hz. Fig. 5 
presents the nominal performance of the full-order, 
54 state Hz control designs at varying levels of at- 
tenuation performance. For each plot, the corre- 
sponding peak p measure is shown where robust sta- 
bility is assessed with respect to 10% real paramet- 
ric uncertainty in the umbilical stiffness. Nominal 
performance is defined by- the attenuation of base 
accelerations on the isolated platform and is com- 
pared against the performance requirement shown 
in Fig. 5. Controller order reduction for these 54 
state H2 controllers was not possible: even slight 

reductions in controller order resulted in unstable 
controllers for each level of nominal performance. 

10‘ 

M 

104 
1 6 ‘  1 6 ‘  100 1 0‘ 10‘ ld 1 0‘ 

Frequency gad/sec) 

Figure 5: Nominal Attenuation Performance with 
H2 Designs 

Robust stability substantially degrades as the 
attenuation performance improves with these der 
signs. Fig. 5 indicates that the nominal perfor- 
mance requirement is met with a design that has 
a p measure of 12.76 (for 10% uncertainty)] which 
indicates that a destabilizing perturbation in um- 
bilical stiffness exists with a magnitude of less than 
1%. Fig. 6 presents a surface of peak p values 
for each Hz controller evaluated for real parameter 
variation in umbilical stiffness and damping varied 
up to 25%. Clearly demonstrated in Figs. 5 and 6 
is the significant loss of robust stability as a func- 
tion of uncertainty for a given H2 controller and 
in general as a function of attenuation performance 
for the H Z  methodology. In general, only the lowest 
performing controllers (attenuation factors greater 
than 4) satisfy the robust stability test for the very 
low levels of parameter variation (5% or less). 

5.2 Fixed-Order Mixed H 2 / H ,  De- 

Next, a set of 12th order mixed HZIH,  controllers 
are synthesized for comparison to  the 54 state full- 
order H2 controllers. For this design, the H2 op- 
timization problem from the last section is aug- 
mented with an H ,  sub-problem based on the um- 
bilical stiffness and damping parametric uncertainty 
model.6 The two sub-problems of the mixed norm 

signs 
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Figure 4: g-LIMIT Generalized Plant for Control Design 

design are defined by the inputs and outputs 

w2 = [ wacc ] z2 = [ zu ] nacc zacc 

w f  d zpu 

= [wunc] 2, = [zuncl 

where the uncertain inputs and outputs, WUnc and 
zUnc, are associated with the uncertain umbilical 
stiffness and damping. The mixed norm controllers 
are obtained by varying the H2 performance weight 
in the same manner as the full order H2 designs. 
The same weights were used for the H2 sub-problem 
as for the full order HZ designs with the exception 
of the performance weight range. Comparing the 54 
state H2 controller to the 12th order mixed HZIH, 
design for the same H2 weights, the attenuation fac- 
tor degrades from .95 for the H2 design to 1.3311 for 
the mixed HZIH, design while the peak p measure 
improves from 12.76 to  0.8952. Whereas the perfor- 
mance only slightly decreases with the addition of 

robust stability and controller order constraints in 
the optimization process, the robust stability in- 
creases substantially. Hence slightly higher per- 
formance weights were needed to  achieve the same 
level of nominal attenuation performance with the 
mixed norm designs. This loss of performance for a 
given set of weights is a direct result of the added 
constraints of the H ,  cost and possibly the fixed 
controller order. 

Attenuation performance for the full set of per- 
formance weights with the mixed norm design is 
similar to the nominal performance for the strict 
H2 controllers shown in Fig. 5. However, the 
peak p values are much less through the full range 
of performance with the mixed H2/H,  controllers 
than with the full order H2 controllers for a given 
level of attenuation performance. This significant 
benefit of the mixed H2/H,  method in compari- 
son to H2 design is revealed in Fig. 7. The im- 
provement in robust stability (assessed for 10% real 
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In addition to the real parameter uncertainty, 
a mixed H2/H, controller was designed for addi- 
tive uncertainty as well. In this case, an additive 
uncertainty model given by 

12- 

10. 

8 -  

b 
I 
4 6 -  z 

4 -  

2 -  

1 -  

(35) 
(1.2566s + 1) 
(0.0251s + 1) 

W a d d  = 0.001 

was included to  provide robustness to unmodeled 
modes above 35 Hz (representing potential payload 
dynamics). The performance and stability of this 
controller is indicated on Fig. 7 along with the set 
of HZ controllers evaluated for this parametric and 
additive uncertainty model. 

This type analysis is important to determine the 

performance and robust stability. Figure 11 shows 

Figure 6: Robust Stability Of H Z  Designs as a range of acceptable controllers in terms of nominal 
tion of Parametric Uncertainty 

the region of acceptable controllers for a specified 
level of uncertainty (10% in this case). The vertical 
dashed line is the boundary of acceptable controllers 
in terms of stability robustness while the horizontal 
dashed line delineates the acceptable performance 
region. Controllers above the horizontal line fail the 
stability requirement while controllers to the right 
of the vertical line fail the attenuation performance 
criteria. Note however that even though the mixed 
HZIH, designs are far superior to the HZ designs, 
the nominal performance objective is not satisfied 
for any controller with a p measure less than one. 
The performance requirement cannot be satisfied 
with guaranteed stability for 10% real parameter 
uncertainty with this design set. 

parametric uncertainty) for the same levels of per- 
formance is indicated by the performance and sta- 
bility trade curves for both the H2 controllers and 
mixed H2/H,  methodologies. A substantially bet- 
ter trade space is obtained for the 12th order mixed 
H 2 / H ,  controllers than for the 54th order H2 de- 
signs. The same levels of performance are obtained 
with considerably greater robust stability with the 
mixed norm designs. For completeness, the per- 
formance and robust stability of the baseline PlD 
controller is indicated as well. Interestingly the 
PlD controller lies on the design curve for the H2 
designs, indicating that the same levels of perfor- 
mance and stability can be attained with the PID 
controller as with the H2 designs. 

6 Conclusions 
I 
I 

I _  Previous approaches to microgravity vibration iso- 
lation system designs have utilized strictly classical 
methods with the exception of a few studies us- 
ing H2 and H ,  methods. In this paper, Hz and 
mixed H2/H, methods have been shown to result 
in comparable levels of nominal performance, albeit 
at significantly different levels of robustness. An un- 

I certainty model for microgravity vibration isolation 
controller design with respect to parametric uncer- 
tainties in umbilical stiffness was used for robust 
stability analysis and robust control design. 

0 It 

1. 

- - - - _ _ _ _  - - - "  -- Q-- l l y .  



not simultaneously provide good mean-square per- 
formance and robust stability guarantees with con- 
trollers of low enough order to be implemented in 
flight hardware. It is important to  note that in this 
application, the low compensator order was neces- 
sary due to  implementation constraints. Incorpo- 
rating D-scales results in a fixed order mixed H2/p  
design approach for which controllers are synthe- 
sized and analyzed to determine the maximum ro- 
bust stability attainable subject to a nominal per- 
formance requirement. Using the fixed order mixed 
H2/H,  design approach resulted in controllers of 
low order that achieved much improved levels of ro- 

7. Fialho, I. J., “H-infinity control design for 
the active rack isolation system,” Paper No. 
ACC00-IEEE0071, American Controls Confer- 
ence, Chicago, IL, June 2000. 

8. Whorton, M. S., “g-LJMIT: A Microgravity 
Vibration Isolation System for the Interna- 
tional Space Station,” AIAA-2001-5090, Octo- 
ber 2001. 

9. B. 
A. fiances, A Course in H, Control Theory, 
Springer-Verlag, Berlin, 1987. 

bust stability for a given level of performance when 
compared to  the standard HZ designs. 

7 References 847 (1989). 

10. J. C. Doyle, K. Glover, P. KhargonelCar, and 
B. A. Francis, LIState-space solutions to stan- 
dard HZ and H ,  control problems,” IEEE 
Transactions o n  Automatic Control, 34, 831- 

1. Boeing Defense And Space Group Missiles and 
Space Division, “System Specification for the 
International Space Station,” Specification No. 
41000D, Nov. 1, 1995. 

11. ~ i ~ ,  ye K., and Whorton, M. s., llEquations 
of Motion for the g-LIh.IIT Microgravity vi- 
bration Isolation System,” NASA TM-2001- 
211301, October 2001. 

iviuitivariame r eeaDacK vesign, iwaison wes- tems for Microgravity Applications,” Journal ley, 1989. of Spacecraft and Rockets, Vol. 37, No. 5, 
Sept.-Oct. 2000. 13. M. Morari and 

3. Jackson, M., Kim, Y., and Whorton, M. S., E. Zafiriou, Robust Process Control, Prentice 
“Design and Analysis of the g-LIMIT Baseline 1989- 
Vibration Isolation Control System,” AIAA 
Paper 2002-5019, Presented at the 2002 AIAA 
Guidance, Navigation, and Control Confer- 
ence, Monterey, CA, August 5-8, 2002. 

4. Hyde, T. T., “Hz Synthesis for Active Vibra- 
tion Isolation,” American Controls Conference, 
Seattle, WA, June 1995. 

5. Hampton, R. D. and Whorton, M. S., 
“Frequency-Weighting Filter Selection, for H2 
Control of Microgravity Isolation Systems: 
A Consideration of the ’Implicit Frequency 
Weighting’ Problem,” IEEE Transactions on  
Instrumentation and Measurement, Vol. 49, 
No. 2, April 2000. 

6. Whorton, M. S., “Robust Control for Micro- 
gravity Vibration Isolation With Parametric 
Uncertainty,” Paper No. ACC02-AIAA1040, 
American Controls Conference, Anchorage, 
AK, May 8-10, 2002. 

14. Sweriduk, G.D., and Calise, A.J., “A Differ- 
ential Game Approach to  the Mixed HZ/H, 
Problem,” Proceedings of the 1994 AIAA 
Guidance, Navigation and Control Conference, 
Scottsdale, AZ, August 1-3, 1994, pp. 1072- 
1082. 

15. Whorton, M.S., Buschek, H., and Calise, A.J. 
“Homotopy Algorithm for Fixed Order Mixed 
H2/H,  Design,” Journal of Guidance, Con- 
trol, and Dynamics, Vol. 19, No. 6, 1996, pp. 
1262-1269. 

16. Bernstein, D.S. and Haddad, W.M., “LQG 
Control With an H ,  Performance Bound: A 
Riccati Equation Approach,” IEEE Transac- 
tions on  Automatic Control, Vol. AC-34, 
March 1989, pp. 293-305. 

17. Rotea, M.A. and Khargonekar, P.P., “Hz - 
Optimal Control with an H, Constraint: The 

11 



State Feedback Case,” Autornatica, Vol. 27, 
NO. 2, 1991, pp. 307-316. 

18. Ridgely D.B., C.P. Mracek and L. Valavani, 
“Numerical Solutions to the General Mixed 
H 2 / H ,  Optimization Problem,” Proc. Amer. 
Contr. Conf., Chicago, IL, pp. 1353-1357. 

19. Ridgely D.B., L. Valavani, M. Dahleh and G. 
Stein, “Solutions to the General Mixed H2/H,  
Control Problem - Necessary Conditions for 
Optimality, Proc. Amer. Contr. Conf., 
Chicago, IL, pp. 1348-1352. 

20. Kramer, F.S. and Calise, A.J., “Fixed-Order 
Dynamic Compensation for Multivariable Lin- 
ear Systems,” Journal of Guidance, Control, 
and Dynamics, Vol. 11, No. 1, 1988, pp. 80- 
85. 

21. Hyland, D.C. and Bernstein, D.S., “The Opti- 
mal Projection Equations for Fixed-Order Dy- 
namic Compensation,” IEEE Transactions on 
Automatic Control, Vol. AC-29, No. 11, 
November 1984, pp. 1034-1037. 

22. Byrns, E.V., Sweriduk, G.D., and Calise, A.J., 
“Optimal H2 and H ,  Fixed Order Dynamic 
Compensation Using Canonical Forms,” Pro- 
ceedings of the 1991 American Control Confer- 
ence, Boston, MA, June 26-28,1991, pp. 1143- 
1148. 

12 


